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Fig 2 Axial depth as a function of frequency for a sheath hehx having a
lossy dielectric cylinder on its axis.
10 A
s“.*
N o
o 08} .‘.‘“"‘ 1
R ".,.r“"
L T
¢ osf o .
1
é I—
p O4f .
S
A o2t
R vamem INHOMOGENE OUS WITH TEFLON
m e == INHOMOGENEOUS WITHOUT TEFLON
s MUSCLE WITHOUT TEFLON
0.0 $ + +
0.0 1.0 2.0 3.0 4.0
RADIUS CM.
Fig. 3. Normalized SAR as a function of radius in a lossy dielectric cylinder

within a sheath helix at 27.12 MHz.

Fig. 3 shows the specific absorption rate (SAR), normalized to
the maximum which occurs at the skin surface, as a function of
radius for a frequency of 27.12 MHz. The large decrease in
energy deposition within the bone and fat layers is largely due
to the decreased conductivity of those dielectrics. The frac-
tional change in normalized SAR is more pronounced at the
muscle-bone interface than at the muscle—fat or fat-skin in-
terfaces. This is attributed to the fact that the radial component
of the electric field is not negligible at the larger radii, so
boundary conditions require the magnitude of the electric field to
be somewhat greater in the fat layer than in the nearby regions of
muscle or skin. The slight increase of deposition in the fat layer
and decrease of deposition in the skin layer caused by the teflon
would also be seen with a decrease in helix radius, which is
consistent with the effect of teflon on axial depth.

The deep, relatively uniform, deposition of energy illustrated in
Fig. 3 is in qualitative agreement with experimental results ob-
tained using models with a thermographic camera [3] and con-
firms that the helical coil shows promise for use as an applicator
in hyperthermia.

V. CONCLUSION

The numerical method described in this paper has been found
to be useful for evaluation of the fields of a sheath helix in a
coaxially layered lossy dielectric medium. The examples pre-
sented pertain to clinical applications and support experimental
results suggesting suitability of the helical coil as an applicator in
hyperthermia.
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Impedance Calculation of Three Narrow Resonant Strips
on the Transverse Plane of a Rectangular Waveguide

KAI CHANG, MEMBER, IEEE

Abstract —A theoretical analysis has been developed to calculate the
impedance of two inductive strips and one capacitive strip located on the
transverse plane of a rectangular waveguide. The current ratios among
the strips were determined by a variational method and then used for
impedance calculations. The results can be applied to the impedance
calculations of a single capacitive strip, two inductive strips, or three
inductive strips as special cases.
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1. INTRODUCTION

Various discontinuities of strips or diaphragms in rectangular
waveguide have been analyzed in the past. These include a single
inductive strip [1], a single capacitive strip [2], an axial inductive
strip [3]-[5], an axial capacitive strip [5], two inductive strips
[6]-[8], three inductive strips [9]-[10], and two resonant strips
[11]. The results for strips can also be applied to round posts by
using a post diameter-to-strip width equivalence in the calcula-
tion [12], [13]. The effect of phase variation of the field across the
post can be accounted for by a lumped element [14], [15].

This paper reports an analysis on three narrow resonant strips
located on the transverse plane of a rectangular waveguide. As
shown in Fig. 1, the configuration consists of two symmetrically
located inductive strips with a tuning capacitive strip placed
between them. This arrangement has many applications in filter
and matching network designs. In many cases, the tuning capaci-
tive strip is used for fine adjustment to compensate the design
discrepancy of the inductive window. Although this structure has
been commonly used, no theoretical analysis has been published.
The purpose of this paper is to formulate a closed-form solution
for this problem.

The resultant theoretical expression is quite general; special
cases of the results lead to the previously reported solutions of a
single capacitive strip, two inductive strips, and three inductive
strips.

II. THEORETICAL DERIVATION

The structure being analyzed is shown in Fig. 1. The strips are
assumed to be infinitesimally thin and made of perfectly conduct-
ing material. The two inductive strips of width w, are placed
symmetrically in a rectangular waveguide, at the plane z = 0. The
capacitive strip of width w, and depth d is located anywhere
between the two inductive strips. The incident dominant-mode
electric field is given by

E, =sin(1a)£)exp(— Tz)p.

The total normalized shunt susceptance B, may be expressed

in the following variational form [2):

4,

Fig. 1. Cross section of a rectangular waveguide with three thin strips in the

same transverse plane.

for J, in (1) yields a lower bound on the true value of the
susceptance.

For narrow strips, the ‘current density on each strip can be
assumed as constant along the X-direction. It can be written in
the form

o=l 3o
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where 4 is an amplitude constant, f is the current ratio, and u(x)
is the unit step function. k is defined as
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and J,(x,y) is the y-directed current density in the strips of
surface §. Using a method similar to that of Lewin [16], the
expression of (1) can be shown to be stationary for small varia-
tions in J, about its correct value. Use of an approximate form
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The reasons for this definition can be found in [2], and therefore
will not be repeated here.
Substituting the current density from (2) into (1), we obtain
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The only unknown in (4) is the current ratio f, which can be
determined by extremizing the variational expression for jBy.
Putting dB; /df = 0 yields
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The solutions to (5) are

— A, £ A3 — 44,4,

24,

f= (6)

One of the solutions results in B =0 and should be rejected.
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Fig. 2. Normahzed susceptance and current ratio as a function of frequency
for strip depth d = 0.05 in.
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for strip depth d = 0.15 in.

III. THEORETICAL DISCUSSION

A computer program has been developed based on this analy-
sis. Using a Ku-band waveguide (a = 0.622 in, b = 0.311 in) as an
example, the theoretical results are plotted in Figs. 2, 3, and 4 as
a function of frequency for three different depths of the capaci-
tive strip. As the capacitive strip is barely inserted into the
waveguide, the impedance is dominated by the two inductive
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strips and the resultant total susceptance is similar to that of two
inductive strips [6], as shown in Fig. 2. As the depth of the
capacitive strip increases, the capacitance becomes larger, and at
certain frequencies it cancels with the inductance. As shown in
Fig. 3, the total normalized susceptance is zero at 15 GHz and
the waveguide is transparent at this frequency. A further increase
of the capacitive strip depth results in strong interactions among
strips, and a very high susceptance over the entire frequency
range as shown in Fig, 4.

Experimental measurements on the reflection coefficient have
confirmed the above theoretical predictions. For d = 0.15 in, a
resonance was observed at frequencies near 15 GHz with very
low reflection. For d = 0.25 in, it was found that the reflection is
very high and the circuit acts like a short circuit.

For a fixed frequency, the total normalized susceptance can be
tuned to zero by varying the depth of the capacitive strip. The
results are shown in Figs. 5 and 6.

IV. SpecIAL CASES

The results given by (4) can be used for the special cases shown
in Fig. 7. They are a single capacitive strip, two inductive strips,
and three inductive strips.

A. Single Capacitive Strip

In this case, the following parameters are set to zero:

W1=0
Q,=0
Fl=0'
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C. Three Inductive Strips
wy In this case, the following condition is set:
P,=0.

! Equation (4) reduces to

(12 2
T 2% (it 1B}
m

| TBy = —— . ©)
@ Ty X [0+ fS.]
n=2 10
This is equivalent to [9, eq. (4)] if f; and f, of [9] are set to be
7b
w, w, f 1 2 df
=1
| , ‘ The first condition is arbitrary because f or f; is solved by
e - acy =t extremizing jB;. The second condition is due to the geometrical
' ! ' : symmetry of the two other strips.
()

V. CONCLUSIONS

A theoretical analysis has been derived for three narrow reso-
nant strips in a rectangular waveguide. As special cases, the
resultant closed-form expression can be used to calculate a single
capacitive strip, two symmetrical inductive strips, and three in-
ductive strips. The results should be useful for filter and matching
circuit designs.
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