
126 IEEE TRANSACTIONS ON MJCROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 1, JANUARY 1984

M 1.0
T
R t

—INHOMOGENEOUS WITH TEFLON
1.___l NHOMOGENEOUS WIT HOUT TEFLON

— MUSCLE WITHOUT TEFLON

0.0
I

5 6 7 8

LOG FREQUENCY HZ

Flg 2 Axial depth as a function of frequency for a sheath helm having a
10SSYdielectric cytinder on its axis.

I ,0

‘~1--”-Al
‘:LkEEE&d--- IN HOMOGENEOUS WITHOUT TEFLON

0.0 I .0 2.0 3.0 4.0

RADIUS CM.

Fig. 3. Normalized SAR as a function of radius in a lossy dielectric cylrnder
within a sheath helix at 27.12 MHz.

Fig. 3 shows the specific absorption rate (SAR), normalized to
the maximum which occurs at the skin surface, as a function of
radius for a frequency of 27.12 MHz. The large decrease in
energy deposition within the bone and fat layers is largely due
to the decreased conductivity of those dielectrics. The frac-
tional change in normalized SAR is more pronounced at the
muscle–bone interface than at the muscle–fat or fat–skin in-
terfaces. This is attributed to the fact that the radial component
of the electric field is not negligible at the larger radii, so
boundary conditions require the magnitude of the electric field to
be somewhat greater in the fat layer than in the nearby reijons of
muscle or skin. The slight increase of deposition in the fat layer
and decrease of deposition in the skirt layer caused by the teflon
would also be seen with a decrease in helix radius, which is
consistent with the effect of teflon on axial depth.

The deep, relatively uniform, deposition of energy illustrated in
Fig. 3 is in qualitative agreement with experimental results ob-
tained using models with a thermographic camera [3] and con-
firms that the helical coil shows promise for use as an applicator
in hyperthermia.

V. CONCLUSION

The numerical method described in this paper has been found

to be useful for evaluation of the fields of a sheath helix in a

coaxially layered lossy dielectric medium. The examples pre-

sented pertain to clinical applications and support experimental

results suggesting suitability of the helical coil as an applicator in

hyperthermia.
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Abstract —A theoretical anafysis has been developed to cafcnfate the

impedance of two inductive strips and one capacitive strip located on the

transverse plane of a rectangular wavegrride. The current ratios among

the strips were determined by a variational method and then used for
impedance calctrfations. The results can be applied to the impedance
calculations of a single capacitive strip, two inductive strips, or three

inductive ships as speciaf cases.
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I. INTRODUCTION

Various discontinuities of strips or diaphragms in rectangular
waveguide have been analyzed in the past. These include a single
inductive strip [1], a single capacitive strip [2], an axial inductive
strip [3]–[5], an axial capacitive strip [5], two inductive strips
[6]-[8], three inductive strips [9]-[10], and two resonant strips
[11]. The results for strips can also be applied to round posts by
using a post diameter-to-strip width equivalence in the calcula-
tion [12], [13]. The effect of phase variation of the field across the
post can be accounted for by a lumped element [14], [15].

This paper reports an analysis on three narrow resonant strips
located on the transverse plane of a rectangular waveguide. As
shown in Fig. 1, the configuration consists of two symmetrically
located inductive strips with a tuning capacitive strip placed
between them. This arrangement hasmany applications in filter
andmatching network designs. In many cases, the tuning capaci-
tive strip is used for fine adjustment to compensate the design
discrepancy of the inductive window. Although this structure has
been commonly used, no theoretical analysis has been published.
The purpose of this paper is to formulate a closed-form solution
for this problem.

The resultant theoretical expression is quite general; special
cases of the results lead to the previously reported solutions of a
single capacitive strip, two inductive strips, and three inductive
strips.

II. THEORETICAL DERIVATION

The structure being analyzed is shown in Fig. 1. The strips are
assumed to be infinitesimally thin and made of perfectly conduct-
ing material. The two inductive strips of width WI are placed
symmetrically in a rectimgulu waveguide, at the plane z = O. The
capacitive strip of width Wz and depth d is located anywhere
between the two inductive strips. The incident dominant-mode
electric field is given by

()E,=sin ~ exp(–r’lz)$.

The total normalized shunt susceptance ET may be expressed
in the following variational form [2]:
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Fig. 1. Cross section of a rectangular waveguide with three thin strips in the
same transverse plane.

for JY in (1) yields a lower bound on the true value of the
susceptance.

For narrow strips, the current density on each strip can be

assumed as constant along the X-direction. It can be written in
the form

[(J.(x, y)=A U X–Cl+~
)(

WI
—u x—cl—— )1

+fAsink(y-b+d)[ u(~-c, +~)-~(X-c, -~)]

[(+A u x–a+cl+~
)(

WI
—u x—a+cl ——

2 )1 (2)

where A is an amplitude constant, f is the current ratio, and U(X)
is the unit step function. k is defined as

k=$” (3)
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2
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where

(

The reasons for this definition can be found in [2], and therefore
am= 1, when m = O

0, when m + O will not be repeated here.
Substituting the current density from (2) into (l), we obtain

(

m’r’ ~’r’

)

1/2
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and {Y( x, y ) is the y-directed current density in the strips of
surface S. Using a method similar to that of Lewin [16], the %(:1:12(k’~n?)f2’’+$2s’Qn+fs’2}
expression of (1) can be shown to be stationary for small varia- [

tions in YYabout its correct value. Use of an approximate form (:)



128 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT32, NO, 1, JANUARY 1984

where
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The only unknown in (4) is the current ratio $, which can be
determined by extremizing the variational expression for j~=.

Putting d~T/df = O yields

A1f2+Azf +A3=0 (5)

where

~=z ~=’2

and

The solutions to (5) are

–A2+/A; –4A1A3
f=

2A1

One of the solutions results in ~~ = O and should

(6)

be rejected.
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Fig. 2. Normalized susceptarme aud current ratio as a function of frequency
for strip depth d = 0.05in.
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111. THEORETICAL DISCUSSION

A computer program has been developed based on this aualy-

sis. Using a Ku-band waveguide (a = 0.622 in, b = 0.311 in) as an
example, the theoretical results are plotted in Figs. 2, 3, and 4 as
a function of frequency for three different depths of the capaci-
tive strip. As the capacitive strip is barely inserted into the
waveguide, the impedance is dominated by the two inductive
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Fig. 4. Normalized susceptance and current ratio as a function of frequency
for strip depth d = 025 in.

strips and the resultant total susceptance is similar to that of two
inductive strips [6], as shown in Fig. 2. As the depth of the
capacitive strip increases, ~e capacitance becomes larger, and at
certain frequencies it cancels ‘tith the inductance. As shown in
Fig. 3, the total normalized susceptance is zero at 15 GHz and
the waveguide is transparent at this frequency. A further increase
of the capacitive strip depth results in strong interactions among
strips, and a very high susceptance over the entire frequency
range as shown in Fig. 4.

Experimental measurements on the reflection coefficient have
confirmed the above theoretical predictions. For d = 0.15 in, a
resonance was observed at frequencies near 15 GHz with very
low reflection. For d = 0.25 in, it was found that the reflection is
very high and the circuit acts like a short circuit.

For a fixed frequency, the total normalized susceptance can be
tuned to zero by varying the depth of the capacitive strip. The
results are shown in Figs. 5 and 6.

IV. SPBCIALCASES

The results given by (4) can be used for the special casesshown
in Fig. 7. They are a single capacitive strip, two inductive strips,
and three inductive strips.

A. Single Capacitive Strip

In this case, the following parameters are set to zero:

Wl=o

Q~=O

F1 = O.
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C. Three Inductive Strips

In this case, the following condition is set:

Pnm= o.

Equation (4) reduces to

2${ F1+fF2}2
J&=

rIOn:2 & [Q. + fsn 12

This is equivalent to [9, eq. (4)] if ~1 and ~2 of [9] are set to be

fl = gf

f2=l.

The first condition is arbitrag because f or fl is solved by
extremizing j~=. The second condition is due to the geometrical
symmetry of the two other strips.

(b)

V. CONCLUSIONS

(c)

Fig. 7. Three special cases, (a) A single capacitive strip. (b) Two symmetncaJ
inductive strips. (c) Three inductive strips.

Equation (4) reduces to

This expression is equivalent to the results previously reported in
[2, eq. (13)].

B. Two Symmetrical Inductive Strips

In this case, the following parameters are zero:

W*=O

Pnm= o

Sn=o

F2 = O.

Equation (4) reduces to

(8)

This is equivalent to [6, eq. (6)] with f = 1 in [6] for two symmetri-

cal inductive strips.

(9)

A theoretical analysis has been derived for three narrow reso-
nant strips in a rectangular waveguide. As special cases, the
resultant closed-form expression can be used to calculate a single
capacitive strip, two symmetrical inductive strips, and three in-
ductive strips. The results should be useful for filter and matching
circuit designs.
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